
Technology Transfer Challenges for High-Assurance
Software Engineering Tools’

Position Paper for Software Engineering. for High Assurance Systems: Synergies between

Process, Product, and Profiling (SEHAS 2003)

John Penix
NASA Ames Research Center

John. J.Penix@nasa.gov

Abstract

In this paper, we describe our experience with the
challenges thar we are currently facing in our effort
to dev_el_op advanced software verification and
validation tools. We categorize these challenges into
several areas: cost benefits modeling, tool usability,
customer application domain, and organizational
issues. We provide examples of challenges in each
area and identrfj, open research issues in areas which
limit our ability to transfer high-assurance software
engineering tools into practice.

1. Introduction

Over the past decade, NASA has been moving away from
the attitude of “get it right at any cost” which was perhaps
epitomized in the Space Shuttle and Space Station
programs. The same might be said of high-assurance
software engineering: gone are the days of critical
software ‘%ernels” which can be completely verified “at
any cost”. Software is now pervasive in critical systems
and this- critical-software is pervasive in our-lives; At
NASA this means that software concerns and software
costs are primary factors in almost every part of a mission
lifecycle.

-Due-to-the -limited-resawes -anhdskmargins for_NASA
missions, the adoption of new software engineering
technologies requires a strong business case that clearly
demonstrates the cost and benefits of the new technology.
However, in performing this type of cost benefits analysis,
we face a variety of challenges. For example, conducting
realistic technology validation studies for new software
engineering techniques is extremely expensive. In
addition, due to the number of variables controlling who
uses the tools and exactly how they are applied, the results

Lawrence 2. Markosian
QSS Group, Inc.

lzrnarkosian @email.arc.nasa.go

of such studies are usually statistically invalid and, at best,
unconvincing when generalized.

In this piper, we describe our experience in deve!c?ping
and evaluating advanced software verification tools for
high-assurance applications. We then describe specific
challenges we face in the areas of cost benefits modeling,
tool usability, customer application domains and
organizational issues. Along the way, we identify open
issues and opportunities which we think will require
coordinated research efforts within the community to
address.

2. Experience

Our specific experience has been in the context of
developing source code analysis tools based on model
checking and static analysis technologies. Model checking
is an automated verification technique for finite-state
systems that has had significant main-stream success in
the areas of microprocessor and protocol verification.
Model checking algorithms can be used to verify that a
finite-state model of a system is free from subtle
concurrency errors such as deadlocks, and that specified
unsafe states or sequences of states are unreachable.

- - - - - . __ - _- -

The Automated Software Engineering Group at NASA

support program verification and validation. Our research
has provided evidence that model checking can increase
the level of assurance for autonomous control
architectures and real-time operating systems. For
example, in 1997, we constructed a model of the resource
management architecture from the Remote Agent
Executive for Deep Space 1. We were able to use model
checking to automatically identify several concurrency
bugs in the software that had not been discovered during

Ames has been extending- technology to .- ..

’ Theresearch described in this report was performed at NASA Ames Research Center’s Automated Software Engineering group and is funded by
NASA’s Engineering for Complex Systems program.

,

testing [4][5]. A nearly identical bug arose (in a different
part of the software) during flight, causing a control
system deadlock. A follow-up study indicated that
automated translation and abstraction tools would have
reduced the cost of applying model checking and allowed
this bug to have been detected prior to flight [3].

We also have an ongoing collaboration with the
Honeywell Technology Center to apply model checking to
the C++ implementation of a multi-threaded operating
system for integrated moduiar avionics. This case study
has been successful in guiding the development of
abstraction techniques, enabling exhaustive verification of
the core scheduling algorithm [6] . There have also been a
number of investigations within NASA showing that
model checking can be effective in early phases of the
lifecycle, during the generation of test cases from
specifications, as well as during Independent Verification
and Validation activities [1][2][7].

3. Challenges

While model checking technology and tools have been
progressing, there are still significant challenges to the
transfer of the technology into NASA missions. Perhaps
the most daunting challenge (and the one most pertinent to
this workshop) is the development of costhenefits or
return on investment models for our tools.

In addition, we continue to encounter challenges in the
areas of tool usability, characteristics of the customer’s
application domain, and various organizational issues. In
the following sections, we provide examples of challenges
in each of these areas. We also identify what we believe to
be the critical open research issues that must be addressed
to move tools into practice more effectively.

3.1 Models and metrics

Tools must be integrated into effective processes for
facilitate ~- technology adoption. We believe that m&g_-
and models should be used to guide when, where and how
technology should be inserted. However, the state of the
art in modeling and measuring software engineering tool
impact is very immature. Understanding the relative cost
and benefits for applying software engineering tools is a
critical issue for NASA because missions have very
constrained resources and are not willing to bear the cost
and risk of new technology adoption. In addition, the
software engineering components of NASA’s research
programs do not have the resources required to sustain
numerous tool development and transfer activities,
increasing the risk of individual transfer efforts.
Therefore, mission and research program resources

available for technology insertion must be managed
effectively, especially if the long-term relationship
required for successful technology transfer is to be
maintained.

With regard to model checking, because the techno!ogy
has many potential insertion points in the lifecycle,
interfacing with missions is particularly challenging. For
example, the costhenefits analysis for model checking
depends on: the point of insertion into process
(requirements, design, coding or testing); the availability
and quality of requirements specifications; the existence
of early lifecycle models; the characteristics of the
application (real-time constraints, programming
language); and, the education and expertise of the tool
user. Therefore, it is difficult to: A) develop the
costhenefit analysis required to show a quantified
improvement in assurance and B) perform the
comprehensive Cosi analysis needed to get manageinent
buy-in. This effectively h i t s our research activities t~
opportunistic case studies and high-risk tool development
activities.

While we can argue that our technology is a risk
reductiodmitigation technology, this is a difficult
argument to win without a strong costhenefits model. In
addition, the area of software risk itself is not very well
understood, therefore quantifying (or even understanding)
the benefits of mitigating specific software risks for
specific missions is not possible. Therefore, better
methods for categorizing and assess software related risk
within a project is critical for supporting technology
transfer.

Any description of the cost and impact of a tool must be
described in terms of some metrics. However, the various
stakeholders are focused on a wide range of metrics. At
the tool level, the focus in on understanding how tool
performance metrics impact development metrics such as
defect density or rework costs. However, in many cases,
rnetrics efforts are insufficient to support good analysis.
For example, data such as defect detection are often not
tracked until late in the testing phases of the project. We
b e l i e ~ r h e r e - ~ h ~ ~ l ~ - b ~ ~ n ~ f ~ o ~ t ~ ~ ~ ~ ~ ~ n ~ - - w h a t - -

metrics are important to understand tool impact and to
provide standard classification schemes for these metrics
(such as early life-cycle defects) to support analysis and
comparison of tool benefits.

3.2 Users and usability

Tool usability has not always been a high-priority issue
for high-assurance domains. However, as tools are
applied to larger systems and as the number of application
domains which require high-assurance techniques

broadens, the cost of using the tools and user productivity
become serious issues.

One usability issue that always arises for tools based on
formal methods is the issue of education. There is some
disagreement over what can we reasonably expect a user
to know, and who is responsible for providing this
education. We don’t believe there is a single answer to
this question from a tool perspective. Instead, we should
focus on capturing the relative cost and benefits
associated with different ciasses of users. Eowever, we
are not aware of any efforts to assess tools in this fashion.
This type of analysis should also take into account the
trade-offs between application domain knowledge and
tool knowledge, and incorporate models of human
learning to account for the effects of learning curves and
variation among users.

Another important issue is that many tools are developed
with single users in mind. However, software engineering
is, now more than ever, a collaborative experience. While
there have been many recent advances in information
technology to support collaborative work, innovative
applications of this technology to support collaborative
software engineering tasks are just beginning. We believe
that the research methods used in work practice studies as
well as the collaborative technology itself can be used to
improve the usability of high-assurance methods and
tools. This may be especially true in areas such as
requirements elicitation and design reviews which are
team oriented, human centered activities. We are
currently working on developing research partnerships
with collaborative technology researchers within NASA.

3.3 Target application domain issues

Our most significant challenge in terms of engaging
mission engineers is being able to handle the complcxity
of real software with our tools. In the areas of embedded
systems, the most common concerns are maintaining
fidelity with respect to real-time constraints and interrupt
handling. These types of issues have recently been
expanaing due t o t h e increasing number orreal-timi-
frameworks and runtime support libraries which are being
used by applications. The brings a new challenge to tools:
they must be flexible in terms of runtime elements such as
thread models, synchronization mechanisms and support
for various runtime “semantics”

- - - - - - - _ _ _ ___.- __

If it weren’t enough that there are a lot of these
technologies, they are also constantly evolving. Java, for
example, is continuing to evolve as it becomes more
pervasive and moves into the real-time domain. This
means that tools must also be flexible in their ability to
support language and library evolution. We believe that

state of the art software engineering principles and
implementation techniques can be used to provide this
flexibility. However, because of the cost of developing
robust, flexible tool architectures, these efforts should be
open, coordinated and shared. We are currently working
on open sourcing several of our more mature tool
architectures as a way to help address these issues in the
community.

3.4 Organizational issues

Our most significant organizational challenge had been in
identifying and developing working relationships with
potential early technology adopters. Developing this type
of relationship requires the equivalent of a “planetary
alignment”: research goals, technology benefits, tool
capabilities, application domain characteristics and
customer goals must all line up for an extended period of
time.

This is an area where it may be beneficial for multiple
projects to pool resources. For example, NASA has
recently begun the development of several High
Dependability Computing testbed projects which will
allow multiple research projects to evaluate software
engineering technology on specific NASA project
applications.

Conclusions
We have identified several significant challenges for high
assurance software engineering tools in the areas of cost-
benefits analysis, tool usability, application domain
characteristics and organizational issues. In some cases,
we have made suggestions on possible research directions
which may help address these challenges. However, there
are many open issues in this area which makes up the gap
between research and practice. We look forward to
learning about other open issues and potential solutions to
these problems as we develop collaborations with other
researchers working on these issues.

___ __

References:
-_ - .- ___________

[11 Callahan, J. R., and Schneider, F., “Specification-
based Testing using Model Checking,” 1996 SPIN
Workshop, Rutgers University.
Easterbrook and Callahan, “Formal Methods for
Verification and Validation of partial
specifications: A Case Study,” Journal of Systems
and Software, 40(3), 1998.
Klaus Havelund, Michael Lowry, SeungJoon Park,
Charles Pecheur, John Penix, Willem Visser, and
Jon L. White, “Formal Analysis of the Remote
Agent Before and After Flight”, In Proceedings of

[2]

[3]

[41

PI

the 5th NASA Langley Formal Methods Workshop,
Williamsburg, VA, June 2000.
Klaus Havelund, Michael Lowry, and John Penix,
“Formal Analysis of a Space Craft Controller using
SPIN”, IEEE Transactions on Software
Engineering, June 200 1.
Lowry, M., Havelund, K. and Penix, J.,
“Verification and Validation of AI Systems that
Control Deep-Space Spacecraft“, Tenth
International Symposium on Methodologies for
Intelligent Systems, Charlotte, North Carolina, Oct.
15-18, 1997. Springer-Verlag Lecture Notes in
Artificial Intelligence, Vol. 1325.
Penix, J., Visser, W., Engstrom, E., Larson, A., and
Weininger, N., “Verification of Time Partitioning
in the DEOS Scheduling Kernel”, 22”d
International Conference on Software Engineering,
Limerick, Ireland, June 2000.
Schneider, F., Easterbrook, S. M., Callahan, J. R.,
and Holzmann, G. J., “Validating Requirements for
Fault Tolerant Systems using Model Checking,”
Third IEEE Conference on Requirements
Engineering, Colorado Springs, CO, April 1998.

